

NSF CARGO: Multi-scale Topological Analysis of Deforming Shapes

APES (Analysis and Parameterization of Evolving Shapes)

Jarek Rossignac Andrzej Szymczak Greg Turk

College of Computing Georgia Tech, Atlanta

Rob Ghrist

School of Mathematics

Georgia Tech, Atlanta

A 4D model of the behavior of 3D shapes

Many animation and simulation packages represent behavior as a series of independent **3D frames**

Yet, a continuous model is better suited for supporting slow-motion, geometric and topological **analysis**, and coherent **segmentation**, **texturing** and **visualization**

Geometry: x,y,z

3D applications migrated from slices to 3D

Need a similar migration for animations

- Represent & slice a hyper-surface in 4D
 - Voxels or Tetrahedra in 4D:
 - (x,y,z,t)+connectivity?
 - Fast slice of hypercubes or tetrahedra
 - Addressed by Jack Snoeyink's CARGO project
- Generate **interpolating** 4D models
 - 3D morph, fitting implicit hyper-surface
- Use 4D model to build temporally coherent <u>segmentations</u> of the evolving shape into <u>features</u>?
- Use 4D model to build temporally coherent <u>parameterizations</u> of the evolving features?

How to generate a 4D model?

- Design by manipulating control points of B-spline S(u,v,t)
- Fit a hyper-surface to constraints (discussed by Greg Turk)
- Piecewise linear or polynomial morphs between 3D frames

•

3D morphing via Minkowski averaging

- $A+B = \{a+b: a\hat{1} A, b\hat{1} B\}$
 - Matches boundary points with same normal
- M(t)=(1-t)A+tB

"Solid-Interpolating Deformations: Construction and Animation of PIPs",

Kaul&Rossignac, C&G'92, 16(1)107-115.

- Constant connectivity, linear trajectory
- Realtime animation

$$M(t) = (1-t)((1-t)((1-t)A+tB)+t((1-t)B+tC))+t((1-t)((1-t)B+tC)+t((1-t)C+tD))$$

"AGRELs and BIPs: Metamorphosis as a Bezier curve in the space of polyhedra", Rossignac&Kaul, CGForum'94, 13(3)179-184.

Vertices move on Bezier curves

From 3D morphs to tets (tetrahedra) in 4D

- Each vertex of M(t)=(1-t)A+tB
 - linearly interpolates a vertex of A and a vertex of B
- The faces of M(t) are time slices of tets in 4D
 - 1, 2, or 3 vertices of a tet are on A
- Tets establish mapping
 - Vertex-triangle
 - Edge-edge
 - Triangle-vertex
- Research: Non-convex cases
 - Pairwise disjoint tets
 - Minimal total distance or volume?
- Research: Temporal coherence
 - Smoothness and key-frame interpolation

Extending analysis/segmentation to 4D

- Segment each 3D frame independently and try making them coherent
- Segment the 4D model
- Want multi-resolution to ignore high frequency details

May need a simplified 4D model

- A detailed (tet) model that interpolates all slices may be too detailed for rapid transmission or animation
- It may not be suited for analyzing its gross features
- We want less-detailed approximations
 - For transmission of Levels-of-Detail
 - To accelerate animation
 - For multi-resolution analysis of animations
- We propose extend simplification techniques developed for meshes in 3D to tetrahedral meshes in 4D
 - Better coherence than simplifying each 3D frame independently
 - May for example simplify a **short** appearance of a protrusion

3D simplification techniques (LOD)

Quantize & cluster vertex data (Rossignac&Borrel'92)

remove degenerate triangles (that have coincident vertices)

- Adapted by Lindstrom for out-of-core simplification
- Repeatedly collapse best edge (Ronfard&Rossignac96)
 - while minimizing bound on **maximum** error
 - Adapted by M. Garland for mean square (quadric) error

4D extensions of 3D simplifications

Edge-collapses were extended to tetrahedral meshes in 3D

"Implant Sprays: Compression of Progressive Tetrahedral Mesh Connectivity", Pajarola, Rossignac, and Szymczak, IEEE Visualization 1999.

- Need a 4D error estimator (isotropic?)
- Get a continuous family of 4D models
 - Each vertex at one level of detail linearly evolves towards its representative in the cruder model (Geomorph)

- Each evolving tetrahedron is a (constant-resolution) slice T(r) of a

ecol

vsplit

2D experiment: Multiresolution cel animation

A 5D multi-resolution behavior model

- We want to create a continuous family S(t,r) of 3D models parameterized by time t and resolution r
- We will represent it as a hyper-surface in 5D: A penta-mesh

Segmentation and parameterization

• Want segmentation and parameterization of S(t,r) that is coherent with respect to t and r.

For multi-resolution behavior analysis and for coherent texture mapping

APES Objective

• Build a multi-resolution model of evolving 3D shapes

- Consider a time-dependent family of "surfaces" M(t) and a process producing a "simplification" S(M(t),r), for simplicity denoted S(t,r), that approximates M within a given "resolution" r.
 - As t and/or r evolve, the shape and **topology** of S(t,r) may change.
- Infer a coherent segmentation and parameterization
 - A **segmentation** of S(t,r) into "natural features" coherent as t or r evolve
 - Some features may appear or disappear as t and r evolve
 - A **parameterization** $F_{(t,r)}(u,v)$ of each feature F that changes "smoothly" with t and r
 - Will support texturing and analysis of evolution
 - A decomposition of the t-r plane into cells, such that within a given cell,
 C, the topology of S(t,r), its segmentation into features and the connectivity of these features remains constant.
 - The precise definitions of the "vague" terms will evolve as we match application needs against theoretical and practical limitations.

Given S(t,r), APES will build

- A **decomposition** of the t-r plane into cells and the association with each cell of the list of its active features.
- A continuous 1-to-1 **map** C(t,r,F,u,v), from some generic domain in t-r-u-v space to the surface of a feature F, which given a point (t,r) in cell C, a feature-Id F, and two parameters (u,v) will return a point on S(t,r).
- A mapping (**junction chart**) from (F,u,v) to (F',u',v') which encodes the conversion between the two parameterizations at the common boundary of two adjacent cells.

Theory, data-structure, algorithms for

- **Representing** the evolution model M and its multi-resolution version S
- Computing M through **interpolation** of 3D frames or 4D samples
- Computing S through **simplification** of M
- **Segmenting** S(t,r) into topologically simple and domain dependent features
- Identifying where the **topology** of S(t,r) **changes**
- **Parameterizing** the features on individual frames, on M, and on S
- **Aligning** the parameterization to the natural orientation of features
- **Slicing** each feature to texture and render it in the desired (t,r) section
- **Decomposing** the t-r plane into cells of constant features and topology
- Supporting **conversion** between parameterizations in adjacent cells
- Measuring and categorizing shape evolution at different resolutions